Natural Language Processing with spaCy
Azadeh Mobasher
Principal Data Scientist
{"I": 1, "got": 2, ...}
Sentences | I | got | covid | coronavirus |
---|---|---|---|---|
I got covid | 1 | 2 | 3 | |
I got coronavirus | 1 | 2 | 4 |
Multiple approaches to produce word vectors:
An example of a word vector:
en_core_web_md
has 300-dimensional vectors for 20,000 words.
import spacy
nlp = spacy.load("en_core_web_md")
print(nlp.meta["vectors"])
>>> {'width': 300, 'vectors': 20000, 'keys': 514157,
'name': 'en_vectors', 'mode': 'default'}
nlp.vocab
: to access vocabulary (Vocab
class)nlp.vocab.strings
: to access word IDs in a vocabularyimport spacy
nlp = spacy.load("en_core_web_md")
like_id = nlp.vocab.strings["like"]
print(like_id)
>>> 18194338103975822726
.vocab.vectors
: to access words vectors of a model or a word, given its corresponding IDprint(nlp.vocab.vectors[like_id])
>>> array([-2.3334e+00, -1.3695e+00, -1.1330e+00, -6.8461e-01, ...])
Natural Language Processing with spaCy