Natural Language Processing with spaCy
Azadeh Mobasher
Principal Data Scientist
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
nlp.disable_pipes(*other_pipes)
epoch
.optimizer = nlp.create_optimizer()
losses = {} for i in range(epochs): random.shuffle(training_data)
for text, annotation in training_data: doc = nlp.make_doc(text) example = Example.from_dict(doc, annotation)
nlp.update([example], sgd = optimizer, losses=losses)
ner = nlp.get_pipe("ner")
ner.to_disk("<ner model name>")
ner = nlp.create_pipe("ner")
ner.from_disk("<ner model name>")
nlp.add_pipe(ner, "<ner model name>")
doc = nlp(text)
entities = [(ent.text, ent.label_) for ent in doc.ents]
Natural Language Processing with spaCy