ETL and ELT in Python
Jake Roach
Data Engineer
Unit tests:
from pipeline import extract, transform, load
# Build a unit test, asserting the type of clean_stock_data
def test_transformed_data():
raw_stock_data = extract("raw_stock_data.csv")
clean_stock_data = transform(raw_data)
assert isinstance(clean_stock_data, pd.DataFrame)
> python -m pytest
test_transformed_data . [100%]
================================ 1 passed in 1.17s ===============================
pipeline_type = "ETL"
# Check if pipeline_type is an instance of a str
isinstance(pipeline_type, str)
True
# Assert that the pipeline does indeed take value "ETL"
assert pipeline_type == "ETL"
# Combine assert and isinstance
assert isinstance(pipeline_type, str)
pipeline_type = "ETL"
# Create an AssertionError
assert isinstance(pipeline_type, float)
Traceback (most recent call last):
File "<stdin>", line 4, in <module>
AssertionError
import pytest
@pytest.fixture()
def clean_data():
raw_stock_data = extract("raw_stock_data.csv")
clean_stock_data = transform(raw_data)
return clean_stock_data
def test_transformed_data(clean_data):
assert isinstance(clean_data, pd.DataFrame)
def test_transformed_data(clean_data):
# Include other assert statements here
...
# Check number of columns
assert len(clean_data.columns) == 4
# Check the lower bound of a column
assert clean_data["open"].min() >= 0
# Check the range of a column by chaining statements with "and"
assert clean_data["open"].min() >= 0 and clean_data["open"].max() <= 1000
ETL and ELT in Python