Deep Learning for Text with PyTorch
Shubham Jain
Instructor
texts = ["I love this!", "This is terrible.", "Amazing experience!", "Not my cup of tea."] labels = [1, 0, 1, 0]
import torch from transformers import BertTokenizer, BertForSequenceClassification
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=32) inputs["labels"] = torch.tensor(labels)
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00001) model.train()
for epoch in range(1): outputs = model(**inputs)
loss = outputs.loss loss.backward()
optimizer.step() optimizer.zero_grad()
print(f"Epoch: {epoch+1}, Loss: {loss.item()}")
Epoch: 1, Loss: 0.7061821222305298
text = "I had an awesome day!" input_eval = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
outputs_eval = model(**input_eval)
predictions = torch.nn.functional.softmax(outputs_eval.logits, dim=-1)
predicted_label = 'positive' if torch.argmax(predictions) > 0 else 'negative' print(f"Text: {text}\nSentiment: {predicted_label}")
Text: I had an awesome day!
Sentiment: positive
Deep Learning for Text with PyTorch