Deep Learning for Text with PyTorch
Shubham Jain
Instructor
Spotlight on Book Reviews:
# Initialize model, criterion, and optimizer rnn_model = RNNModel(input_size, hidden_size, num_layers, num_classes) ... # Model training for epoch in range(10): outputs = rnn_model(X_train) ... print(f'Epoch: {epoch+1}, Loss: {loss.item()}')
outputs = rnn_model(X_test) _, predicted = torch.max(outputs, 1)
from torchmetrics import Accuracy
actual = torch.tensor([0, 1, 1, 0, 1, 0]) predicted = torch.tensor([0, 0, 1, 0, 1, 1])
accuracy = Accuracy(task="binary", num_classes=2)
acc = accuracy(predicted, actual) print(f"Accuracy: {acc}")
Accuracy: 0.6666666666666666
from torchmetrics import Precision, Recall
precision = Precision(task="binary", num_classes=2) recall = Recall(task="binary", num_classes=2)
prec = precision(predicted, actual) rec = recall(predicted, actual)
print(f"Precision: {prec}") print(f"Recall: {rec}")
Precision: 0.6666666666666666
Recall: 0.5
Precision: 0.6666666666666666
Recall: 0.5
from torchmetrics import F1Score
f1 = F1Score(task="binary", num_classes=2)
f1_score = f1(predicted, actual)
print(f"F1 Score: {f1_score}")
F1 Score: 0.5714285714285715
Multiclass cores may be identical
Always consider the problem when interpreting results!
Deep Learning for Text with PyTorch