Deep Learning for Text with PyTorch
Shubham Jain
Instructor
sentences = ["I love this product", "This is terrible", "Could be better", "This is the best"] labels = [1, 0, 0, 1]
train_sentences = sentences[:3] train_labels = labels[:3] test_sentences = sentences[3:] test_labels = labels[3:]
class TransformerEncoder(nn.Module):
def __init__(self, embed_size, heads, num_layers, dropout): super(TransformerEncoder, self).__init__()
self.encoder = nn.TransformerEncoder( nn.TransformerEncoderLayer(d_model=embed_size, nhead=heads), num_layers=num_layers)
self.fc = nn.Linear(embed_size, 2)
def forward(self, x):
x = self.encoder(x)
x = x.mean(dim=1)
return self.fc(x)
model = TransformerEncoder(embed_size=512, heads=8, num_layers=3, dropout=0.5)
optimizer = optim.Adam(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss()
for epoch in range(5):
for sentence, label in zip(train_sentences, train_labels): tokens = sentence.split()
data = torch.stack([token_embeddings[token] for token in tokens], dim=1)
output = model(data)
loss = criterion(output, torch.tensor([label]))
optimizer.zero_grad() loss.backward() optimizer.step() print(f"Epoch {epoch}, Loss: {loss.item()}")
Epoch 0, Loss: 13.788233757019043
Epoch 1, Loss: 3.9480819702148438
Epoch 2, Loss: 2.4790847301483154
Epoch 3, Loss: 1.3020926713943481
Epoch 4, Loss: 0.4660853147506714
def predict(sentence): model.eval()
with torch.no_grad():
tokens = sentence.split() data = torch.stack([token_embeddings.get(token, torch.rand((1, 512))) for token in tokens], dim=1)
output = model(data)
predicted = torch.argmax(output, dim=1)
return "Positive" if predicted.item() == 1 else "Negative"
sample_sentence = "This product can be better"
print(f"'{sample_sentence}' is {predict(sample_sentence)}")
'This product can be better' is Negative
Deep Learning for Text with PyTorch