End-to-End Machine Learning
Joshua Stapleton
Machine Learning Engineer
Features
Feature store
Principles
Example: heart disease features
from feast import Field, Entity, ValueType, FeatureStore from feast.data_source import FileSource
# Define the entity, which in this case is a patient, and features patient = Entity(name="patient", join_keys=["patient_id"])
chol = Field(name="chol", dtype=Float32) age = Field(name="age", dtype=Int32) ...
# Define the data source data_source = FileSource( path="/path_to_heart_disease_dataset.csv", event_timestamp_column="event_timestamp", created_timestamp_column="created")
# ... continued # Create a feature view of the data heart_disease_fv = FeatureView(name="heart_disease", entities=[patient], schema=[cholesterol, ...], ttl=timedelta(days=1), input=data_source,)
# Create a FeatureStore object store = FeatureStore(repo_path=".")
# Register the FeatureView store.apply([patient, heart_disease_fv])
Model registry
Benefits
End-to-End Machine Learning