Evaluating image classifiers

Intermediate Deep Learning with PyTorch

Michal Oleszak

Machine Learning Engineer

Data augmentation at test time

Data augmentation for training data:

train_transforms = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(45),
    transforms.RandomAutocontrast(),
    transforms.ToTensor(),
    transforms.Resize((64, 64)),
])

dataset_train = ImageFolder(
  "clouds_train", 
  transform=train_transforms,
)

Data augmentation for test data:

test_transforms = transforms.Compose([
    #
    # NO DATA AUGMENTATION AT TEST TIME
    #
    transforms.ToTensor(),
    transforms.Resize((64, 64)),
])

dataset_test = ImageFolder(
  "clouds_test", 
  transform=test_transforms,
)
Intermediate Deep Learning with PyTorch

Precision & Recall: binary classification

In binary classification:

  • Precision: Fraction of correct positive predictions
  • Recall: Fraction of all positive examples correctly predicted

A 2 by 2 confusion matrix with each of the four fields marked in a different color; next to it, formulas for recall and precision are expressed in terms of the color codes.

Intermediate Deep Learning with PyTorch

Precision & Recall: multi-class classification

In multi-class classification: separate precision and recall for each class

  • Precision: Fraction of cumulus-predictions that were correct
  • Recall: Fraction of all cumulus examples correctly predicted

 

Cumulus cloud picture

Intermediate Deep Learning with PyTorch

Averaging multi-class metrics

  • With 7 classes, we have 7 precision and 7 recall scores
  • We can analyze them per-class, or aggregate:
    • Micro average: global calculation
    • Macro average: mean of per-class metrics
    • Weighted average: weighted mean of per-class metrics
Intermediate Deep Learning with PyTorch

Averaging multi-class metrics

from torchmetrics import Recall

recall_per_class = Recall(task="multiclass", num_classes=7, average=None)
recall_micro = Recall(task="multiclass", num_classes=7, average="micro")
recall_macro = Recall(task="multiclass", num_classes=7, average="macro")
recall_weighted = Recall(task="multiclass", num_classes=7, average="weighted")

When to use each:

  • Micro: Imbalanced datasets
  • Macro: Care about performance on small classes
  • Weighted: Consider errors in larger classes as more important
Intermediate Deep Learning with PyTorch

Evaluation loop

from torchmetrics import Precision, Recall

metric_precision = Precision(
  task="multiclass", num_classes=7, average="macro"
)
metric_recall = Recall(
  task="multiclass", num_classes=7, average="macro"
)

net.eval() with torch.no_grad(): for images, labels in dataloader_test:
outputs = net(images) _, preds = torch.max(outputs, 1) metric_precision(preds, labels) metric_recall(preds, labels)
precision = metric_precision.compute() recall = metric_recall.compute()
  • Import and define precision and recall metrics
  • Iterate over test examples with no gradient
  • For each test batch, get model outputs, take most likely class, and pass it to metric functions along with the labels
  • Compute the metrics
print(f"Precision: {precision}")
print(f"Recall: {recall}")
Precision: 0.7284010648727417
Recall: 0.763038694858551
Intermediate Deep Learning with PyTorch

Analyzing performance per class

metric_recall = Recall(
  task="multiclass", num_classes=7, average=None
)
net.eval()
with torch.no_grad():
    for images, labels in dataloader_test:
        outputs = net(images)
        _, preds = torch.max(outputs, 1)
        metric_recall(preds, labels)
recall = metric_recall.compute()
print(recall)
tensor([0.6364, 1.0000, 0.9091, 0.7917, 
        0.5049, 0.9500, 0.5493],
       dtype=torch.float32)
  • Compute metric with average=None
  • This gives one score per class
  • Dataset's .class_to_idx attribute maps class names to indices
dataset_test.class_to_idx
{'cirriform clouds': 0,
 'clear sky': 1,
 'cumulonimbus clouds': 2,
 'cumulus clouds': 3,
 'high cumuliform clouds': 4,
 'stratiform clouds': 5,
 'stratocumulus clouds': 6}
Intermediate Deep Learning with PyTorch

Analyzing performance per class

{
  k: recall[v].item() 
  for k, v 
  in dataset_test.class_to_idx.items()
}
{'cirriform clouds': 0.6363636255264282,
 'clear sky': 1.0,
 'cumulonimbus clouds': 0.9090909361839294,
 'cumulus clouds': 0.7916666865348816,
 'high cumuliform clouds': 0.5048543810844421,
 'stratiform clouds': 0.949999988079071,
 'stratocumulus clouds': 0.5492957830429077}
  • k = class name, e.g. cirriform clouds
  • v = class index, e.g. 0
  • recall[v] = tensor(0.6364, dtype=torch.float32)
  • recall[v].item() = 0.6364
Intermediate Deep Learning with PyTorch

Let's practice!

Intermediate Deep Learning with PyTorch

Preparing Video For Download...