Deep Learning for Images with PyTorch
Michal Oleszak
Machine Learning Engineer
Original image
Semantic segmentation
Instance segmentation
Panoptic segmentation
Combining semantic and instance segmentation can be complex:
Our workflow:
model = UNet()
with torch.no_grad():
semantic_masks = model(image_tensor)
print(semantic_masks.shape)
torch.Size([1, 3, 427, 640])
semantic_mask = torch.argmax(
semantic_masks, dim=1
)
model = MaskRCNN()
with torch.no_grad(): instance_masks = model(image_tensor)[0]["masks"] print(instance_masks.shape)
torch.Size([80, 1, 427, 640])
panoptic_mask = torch.clone(semantic_mask)
instance_id = 3 for mask in instance_masks:
panoptic_mask[mask > 0.5] = instance_id
instance_id += 1
Deep Learning for Images with PyTorch