Deep Learning for Images with PyTorch
Michal Oleszak
Machine Learning Engineer
Convolution with the stride of 1:
nn.Conv2d(..., stride=1)
Convolution with the stride of 2:
nn.Conv2d(..., stride=2)
def dc_gen_block( in_dim, out_dim, kernel_size, stride ):
return nn.Sequential( nn.ConvTranspose2d( in_dim, out_dim, kernel_size, stride=stride, ),
nn.BatchNorm2d(out_dim),
nn.ReLU() )
Generator block consists of:
class DCGenerator(nn.Module): def __init__(self, in_dim, kernel_size=4, stride=2): super(Generator, self).__init__() self.in_dim = in_dim
self.gen = nn.Sequential( dc_gen_block(in_dim, 1024, kernel_size, stride), dc_gen_block(1024, 512, kernel_size, stride), dc_gen_block(512, 256, kernel_size, stride),
nn.ConvTranspose2d(256, 3, kernel_size, stride=stride),
nn.Tanh() )
def forward(self, x): x = x.view(len(x), self.in_dim, 1, 1) return self.gen(x)
def dc_disc_block( in_dim, out_dim, kernel_size, stride ):
return nn.Sequential( nn.Conv2d( in_dim, out_dim, kernel_size, stride=stride, ),
nn.BatchNorm2d(out_dim),
nn.LeakyReLU(0.2), )
Discriminator block consists of:
class Discriminator(nn.Module): def __init__(self, kernel_size=4, stride=2): super(Discriminator, self).__init__()
self.disc = nn.Sequential( dc_disc_block(3, 512, kernel_size, stride), dc_disc_block(512, 1024, kernel_size, stride), nn.Conv2d(1024, 1, kernel_size, stride=stride), )
def forward(self, x): x = self.disc(x) return x.view(len(x), -1)
Deep Learning for Images with PyTorch