Monitoring Machine Learning in Python
Hakim Elakhrass
Co-founder and CEO of NannyML
# Initialize the DLE algorithm
estimator = nannyml.DLE(
y_true='target',
y_pred='y_pred',
metrics=['rmse'],
timestamp_column_name='timestamp',
chunk_period='d'
feature_column_names=features,
tune_hyperparameters=False
)
# Fit the algorithm
estimator.fit(reference)
results = estimator.estimate(analysis)
Used for binary and multiclass classification problems
Leverages confidence scores to estimate confusion matrix
Estimates any classification performance metric
# Initialize the CBPE algorithm
estimator = nannyml.CBPE(
y_pred_proba='y_pred_proba',
y_pred='y_pred',
y_true='targets',
timestamp_column_name='timestamp',
metrics=['roc_auc'],
chunk_period='d',
problem_type='classification_binary',
)
# Fit the algorithm
estimator.fit(reference)
results = estimator.estimate(analysis)
results.plot().show()
Monitoring Machine Learning in Python