Monitoring Machine Learning in Python
Maciej Balawejder
Data Scientist
# Initialize the calculator
calculator = nannyml.PerformanceCalculator(...
problem_type='classification_binary',
metrics=['business_value'],
# [value_of_TN, value_of_FP], [value_of_FN, value_of_TP]]
business_value_matrix = [[0, -200],[-100, 1000]],
normalize_business_value='None')
# Initialize the estimator
estimator = nannyml.CBPE(...
problem_type='classification_binary',
metrics=['business_value'],
# [value_of_TN, value_of_FP], [value_of_FN, value_of_TP]]
business_value_matrix = [[0, -200],[-100, 1000]],
normalize_business_value='per_prediction')
Monitoring Machine Learning in Python