Monitoring Machine Learning in Python
Hakim Elakhrass
CEO and co-founder
# Initialize multivariate drift detection calculator
mv_calc = nannyml.DataReconstructionDriftCalculator(
column_names=features_column_names,
timestamp_column_name='timestamp',
chunk_period='m'
)
# Fit and calculate the results
mv_calc.fit(reference)
mv_results = mv_calc.calculate(analysis)
mv_figure = mv_results.filter(period='analysis').plot()
mv_figure.show()
figure = mv_results.filter(period='analysis').compare(perf_results).plot()
figure.show()
Monitoring Machine Learning in Python