Designing Forecasting Pipelines for Production
Rami Krispin
Senior Manager, Data Science and Engineering
mlflow ui








Model evaluation
Potential improvements

Model optimization
Potential improvements



ml_models2 = {
"lightGBM1": LGBMRegressor(n_estimators = 100, learning_rate= 0.1),
"lightGBM2": LGBMRegressor(n_estimators = 250, learning_rate= 0.1),
"lightGBM3": LGBMRegressor(n_estimators = 500, learning_rate= 0.1),
"lightGBM4": LGBMRegressor(n_estimators = 100, learning_rate= 0.05),
"lightGBM5": LGBMRegressor(n_estimators = 250, learning_rate= 0.05),
"lightGBM6": LGBMRegressor(n_estimators = 500, learning_rate= 0.05),
}


Designing Forecasting Pipelines for Production