Designing Forecasting Pipelines for Production
Rami Krispin
Senior Manager, Data Science and Engineering

import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


meta = ee.get_metadata(api_key = api_key,
api_path = api_meta_path, 
meta_path= log_path, 
facets = facets, 
offset = 22, window = 336)


meta = ee.get_metadata(api_key = api_key,
api_path = api_meta_path, 
meta_path= log_path, 
facets = facets, 
offset = 22, window = 336)


if not meta.updates_available:
  log.no_updates()




get = ea.eia_get(api_key=api_key, 
    api_path= api_data_path, 
    data = "value", facets = facets, 
    start = meta.start, 
    end = meta.api_end_offset)


log.failure()

test = ee.Validation(data = get.data,  
tbl_name= "get request", 
label = "validation",
parameters=get.parameters,initial= False,
warning=0.10, error=0, critical=0)
schema_refresh = pb.Schema(
    columns=[
        ("index", "datetime64[ns]"),   
        ("respondent", "object"),
        ("respondent-name", "object"),
        ("type", "object"),
        ("type-name", "object"),
        ("value", "int64"),
        ("value-units", "object")
    ])
test.add_schema(schema = schema_refresh)



log.failure()

if log.log["status"]:
  print("Appending the data")
  df = ee.AppendData()
  df.append_data(data_path = data_path, 
    new_data = get.data,save = True,
    schema = schema_append, 
    parameters = get.parameters)
  print(df.validation)
  if df.status and df.save:
    log.log["update"] = True
  else:
    log.log["update"] = False










Designing Forecasting Pipelines for Production