Designing Forecasting Pipelines for Production
Rami Krispin
Senior Manager, Data Science and Engineering

import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


import etl.eia_etl as eelog = ee.Log()facet = {'respondent': 'US48', 'type': 'D'}log.create_log(facets = facets)


meta = ee.get_metadata(api_key = api_key,
api_path = api_meta_path,
meta_path= log_path,
facets = facets,
offset = 22, window = 336)


meta = ee.get_metadata(api_key = api_key,
api_path = api_meta_path,
meta_path= log_path,
facets = facets,
offset = 22, window = 336)


if not meta.updates_available:
log.no_updates()




get = ea.eia_get(api_key=api_key,
api_path= api_data_path,
data = "value", facets = facets,
start = meta.start,
end = meta.api_end_offset)


log.failure()

test = ee.Validation(data = get.data,
tbl_name= "get request",
label = "validation",
parameters=get.parameters,initial= False,
warning=0.10, error=0, critical=0)
schema_refresh = pb.Schema(
columns=[
("index", "datetime64[ns]"),
("respondent", "object"),
("respondent-name", "object"),
("type", "object"),
("type-name", "object"),
("value", "int64"),
("value-units", "object")
])
test.add_schema(schema = schema_refresh)



log.failure()

if log.log["status"]:
print("Appending the data")
df = ee.AppendData()
df.append_data(data_path = data_path,
new_data = get.data,save = True,
schema = schema_append,
parameters = get.parameters)
print(df.validation)
if df.status and df.save:
log.log["update"] = True
else:
log.log["update"] = False










Designing Forecasting Pipelines for Production