Learning about Redshift data types and features

Introduction to Redshift

Jason Myers

Principal Architect

Basic data types

Numeric types

  • SMALLINT, INTEGER, BIGINT
  • DECIMAL / NUMERIC
  • DOUBLE PRECISION
  • REAL

Datetime types

  • DATE
  • TIME, TIMETZ
  • TIMESTAMP, TIMESTAMPTZ

Character types

  • CHAR
  • VARCHAR

Boolean type

  • BOOLEAN
Introduction to Redshift

Special data types

SUPER type

  • Semistructured data
    • Arrays
    • Tuples
    • Nested structures (e.g. JSON)
  • Uses PartiQL to handle them
  • 16MB max size

VARBYTE type

  • binary data (BLOBs)
  • Images and Videos
Introduction to Redshift

Unsupported PostgreSQL types:

PostgreSQL Type Redshift Types
DATETIME TIMESTAMP, TIMESTAMPTZ
SERIAL INTEGER, BIGINT
UUID VARCHAR
JSON SUPER, VARCHAR
ARRAY SUPER, VARCHAR
BIT BOOLEAN, SMALLINT, VARCHAR
Introduction to Redshift

Viewing columns and their data types

-- View the column details
SELECT column_name, 
       data_type, 
       character_maximum_length AS character_max_len,
       numeric_precision, 
       numeric_scale
  -- Using a view with both internal and external schema's columns
  FROM SVV_ALL_COLUMNS 
 -- Only in the spectrumdb schema
 WHERE schema_name = 'spectrumdb'
   -- For the ecommerce_sales table
   AND table_name = 'ecommerce_sales';
Introduction to Redshift

Viewing columns and their data types (cont)

column_name                  | data_type         | character_max_len | numeric_precision | numeric_scale
=============================|===================|===================|===================|==============
year_qtr                     | character varying | 100               | null              | null
total_sales                  | integer           | null              | 32                | 0
ecom_sales                   | integer           | null              | 32                | 0
percent_ecom                 | real              | null              | null              | null
percent_change_quarter_total | real              | null              | null              | null
percent_change_quarter_ecom  | real              | null              | null              | null
percent_change_year_total    | real              | null              | null              | null
percent_change_year_ecom     | real              | null              | null              | null
Introduction to Redshift

Data type "compatibility"

  • Implicit conversion: assignments, comparisons
  • Make sure to double check outcomes!
From Type To Types
CHAR VARCHAR
DATE CHAR, VARCHAR, TIMESTAMP, TIMESTAMPTZ
TIMESTAMP CHAR, DATE, VARCHAR, TIMESTAMPTZ
BIGINT BOOLEAN, CHAR, DECIMAL, DOUBLE PRECISION, INTEGER, REAL, SMALLINT, VARCHAR
DECIMAL BIGINT, CHAR, DOUBLE PRECISION, INTEGER, REAL, SMALLINT, VARCHAR
1 https://docs.aws.amazon.com/redshift/latest/dg/c_Supported_data_types.html#r_Type_conversion
Introduction to Redshift

Explicitly casting data types

  • CAST
-- Casting a decimal to a integer and aliasing it
SELECT CAST(2.00 AS INTEGER) AS our_int;
our_int
========
2
(1 row)
Introduction to Redshift

TO functions

  • TO_CHAR, TO_DATE, TO_NUMBER
-- Convert the string to a date
SELECT CAST('14-01-2024 02:36:48' AS DATE) AS out_date;
date/time field value out of range: "14-01-2024 02:36:48"
HINT:  Perhaps you need a different "datestyle" setting.
-- Parse the string to a date
SELECT TO_DATE('14-01-2024 02:36:48', 'DD-MM-YYYY') AS our_date;
our_date
========
2024-01-14
(1 row)
Introduction to Redshift

TO functions (cont)

-- Get the name of the month in a date
SELECT TO_CHAR(date '2024-01-14', 'MONTH') AS month_name;
month_name
========
JANUARY
(1 row)
  • Datetime and Numeric format strings
1 https://docs.aws.amazon.com/redshift/latest/dg/r_FORMAT_strings.html
Introduction to Redshift

Let's practice!

Introduction to Redshift

Preparing Video For Download...