Intermediate Network Analysis in Python
Eric Ma
Data Carpentry instructor and author of nxviz package
Exploration at global and local scales
Global: Centrality distributions
Local: Connectivity and structures
Isolate a given node or set of nodes
Plot node statistic over time
customer1
- node of interestGs = [....]
noi = 'customer1'
degs = []
for g in Gs: ... # Get the degree of the node degs.append(len(g.neighbors(noi)))
plt.plot(degs) plt.show()
from collections import defaultdict d = defaultdict(list)
d['heathrow'].append(0.31) d['heathrow'].append(0.84)
d
defaultdict(list, {'heathrow': [0.31, 0.84]})
d2 = dict()
d2['heathrow'].append(0.31)
KeyError Traceback (most recent call last)
<ipython-input-19-291c74368a8f> in <module>()
--> 1 d2['heathrow'].append(0.31)
KeyError: 'heathrow'
Intermediate Network Analysis in Python