Vector Databases for Embeddings with Pinecone
James Chapman
Curriculum Manager, DataCamp
index.upsert(
vectors=vector_set1, namespace="namespace1"
)
index.upsert(
vectors=vector_set2, namespace="namespace2"
)
index.describe_index_stats()
{'dimension': 1536,
'index_fullness': 0.0,
'namespaces': {'namespace1': {'vector_count': 5},
'namespace2': {'vector_count': 5}},
'total_vector_count': 10}
query_result = index.query( vector=vector,
namespace='namespace1',
top_k=3 )
index.delete(
ids=["1", "2"],
namespace='namespace1'
)
Vector Databases for Embeddings with Pinecone