Vector Databases for Embeddings with Pinecone
James Chapman
Curriculum Manager, DataCamp
pc = Pinecone(api_key="API_KEY") pc.create_index( name='datacamp-index', dimension=1536, spec=ServerlessSpec( cloud='aws', region='us-east-1' ) )
index = pc.Index('datacamp-index')
index = pc.Index('datacamp-first')
...
pinecone.core.client.exceptions.NotFoundException: (404)
Reason: Not Found
HTTP response headers: HTTPHeaderDict({'content-type': 'text/plain; charset=...
HTTP response body: {"error":{"code":"NOT_FOUND","message":"Resource datacamp-first
not found"},"status":404}
index.describe_index_stats()
{'dimension': 1536,
'index_fullness': 0.0,
'namespaces': {},
'total_vector_count': 0}
Focus on the single namespace case for now
pc.delete_index('datacamp-index')
pc.list_indexes()
{'indexes': []}
Vector Databases for Embeddings with Pinecone