Retrieving vectors

Vector Databases for Embeddings with Pinecone

James Chapman

Curriculum Manager, DataCamp

Recap...

An index being created.

Vector Databases for Embeddings with Pinecone

Recap...

Several records being ingested into the index. The index fullness increases once the records are added.

Vector Databases for Embeddings with Pinecone

Accessing vectors

 

Fetching

  • Retrieve vectors based on their IDs

A book being retrieved based on its ISBN.

 

Querying

  • Retrieve similar vectors to an input vector

Amazon book recommendations.

Vector Databases for Embeddings with Pinecone

Fetching vectors

index.fetch(

ids=['0', '1']
)
{'namespace': '',
 'usage': {'read_units': 1},
 'vectors': {'0': {'id': '0',
                   'metadata': {"genre": "productivity", "year": 2020},
                   'values': [0.025525547564029694, ...]},
             '1': {'id': '1',
                   'metadata': {"genre": "action", "year": 2023},
                   'values': [-0.0131468913, ...]}}
}
1 https://docs.pinecone.io/guides/data/fetch-data
Vector Databases for Embeddings with Pinecone

Read units

 

  • Measure of the resources consumed during read operations:
    • Fetching → 1RU / 10 records
    • Querying
    • Listing

 

Pinecone starter account pricing.

1 https://www.pinecone.io/pricing/
Vector Databases for Embeddings with Pinecone

Fetching vectors from namespaces

index.fetch(
    ids=['0', '1']

namespace='namespace1'
)
{'namespace': 'namespace1',
 'usage': {'read_units': 1},
 'vectors': {'0': {'id': '0',
                   'metadata': {"genre": "productivity", "year": 2020},
                   'values': [0.025525547564029694, ...]},
             '1': {'id': '1',
                   'metadata': {"genre": "action", "year": 2023},
                   'values': [-0.0131468913, ...]}}
}
Vector Databases for Embeddings with Pinecone

Let's practice!

Vector Databases for Embeddings with Pinecone

Preparing Video For Download...