Vector Databases for Embeddings with Pinecone
James Chapman
Curriculum Manager, DataCamp
Fetching
Querying
index.fetch(
ids=['0', '1']
)
{'namespace': '',
'usage': {'read_units': 1},
'vectors': {'0': {'id': '0',
'metadata': {"genre": "productivity", "year": 2020},
'values': [0.025525547564029694, ...]},
'1': {'id': '1',
'metadata': {"genre": "action", "year": 2023},
'values': [-0.0131468913, ...]}}
}
index.fetch( ids=['0', '1']
namespace='namespace1'
)
{'namespace': 'namespace1',
'usage': {'read_units': 1},
'vectors': {'0': {'id': '0',
'metadata': {"genre": "productivity", "year": 2020},
'values': [0.025525547564029694, ...]},
'1': {'id': '1',
'metadata': {"genre": "action", "year": 2023},
'values': [-0.0131468913, ...]}}
}
Vector Databases for Embeddings with Pinecone