Vector Databases for Embeddings with Pinecone
James Chapman
Curriculum Manager, DataCamp
index.query(
vector=[-0.250919762305275, ...],
top_k=3
)
{'matches': [{'id': '1', 'score': 0.0478537641, 'values': []},
{'id': '2', 'score': 0.046000585, 'values': []},
{'id': '3', 'score': 0.0458319113, 'values': []}],
'namespace': '',
'usage': {'read_units': 5}}
index.query( vector=[-0.250919762305275, ...], top_k=3,
include_values=True
)
{'matches': [{'id': '1', 'score': 0.0478537641, 'values': [-0.0131468913, ...]},
{'id': '2', 'score': 0.046000585, 'values': [-0.0120476764, ...]},
{'id': '3', 'score': 0.0458319113, 'values': [0.00285418332, ...]}],
'namespace': '',
'usage': {'read_units': 5}}
pc.create_index( name="datacamp-index", dimension=1536,
metric='dotproduct',
spec=ServerlessSpec( cloud='aws', region='us-east-1' ) )
metric
→ 'cosine'
, 'euclidean'
, 'dotproduct'
Vector Databases for Embeddings with Pinecone