Vector Databases for Embeddings with Pinecone
James Chapman
Curriculum Manager, DataCamp

index.query(vector=[-0.250919762305275, ...],top_k=3)
{'matches': [{'id': '1', 'score': 0.0478537641, 'values': []},
{'id': '2', 'score': 0.046000585, 'values': []},
{'id': '3', 'score': 0.0458319113, 'values': []}],
'namespace': '',
'usage': {'read_units': 5}}
index.query( vector=[-0.250919762305275, ...], top_k=3,include_values=True)
{'matches': [{'id': '1', 'score': 0.0478537641, 'values': [-0.0131468913, ...]},
{'id': '2', 'score': 0.046000585, 'values': [-0.0120476764, ...]},
{'id': '3', 'score': 0.0458319113, 'values': [0.00285418332, ...]}],
'namespace': '',
'usage': {'read_units': 5}}




pc.create_index( name="datacamp-index", dimension=1536,metric='dotproduct',spec=ServerlessSpec( cloud='aws', region='us-east-1' ) )
metric → 'cosine', 'euclidean', 'dotproduct'Vector Databases for Embeddings with Pinecone