Vector Databases for Embeddings with Pinecone
James Chapman
Curriculum Manager, DataCamp
You'll learn to...
→ Building and scaling GenAI applications!
What we'll use in this course
from pinecone import Pinecone, ServerlessSpec
pc = Pinecone(api_key="API_KEY")
pc.create_index(
name='datacamp-index',
dimension=1536,
spec=ServerlessSpec(
cloud='aws', region='us-east-1'
)
)
pc.list_indexes()
{'indexes': [{'dimension': 1536,
'host': 'datacamp-index-1eef0f4.svc.aped-4627-b74a.pinecone.io',
'metric': 'cosine',
'name': 'datacamp-index',
'spec': {'serverless': {'cloud': 'aws', 'region': 'us-east-1'}},
'status': {'ready': True, 'state': 'Ready'}}]}
Vector Databases for Embeddings with Pinecone