Introduction to Pinecone indexes

Vector Databases for Embeddings with Pinecone

James Chapman

Curriculum Manager, DataCamp

Pinecone logo

 

You'll learn to...

  • Create indexes and ingest vectors
  • Retrieve and query vectors
  • Create common AI applications

 

→ Building and scaling GenAI applications!

 

 

semantic search

Vector Databases for Embeddings with Pinecone

Indexes

 

  • Store vectors
  • Serve queries and other vector manipulations
  • Index contains records for each vector, including metadata
  • Can create multiple indexes

A filing cabinet with four draws, each containing multiple folders.

Vector Databases for Embeddings with Pinecone

Pod-Based

A pod containing several indexes.

  • Choose hardware to create the index → pods
  • Pod type determines storage, query latency, query throughout

Serverless

Indexes stored in the cloud.

  • No resource management
  • Indexes scale automatically
  • Run on cloud and store in blob
  • Easier to use and often lower cost

What we'll use in this course

1 https://docs.pinecone.io/guides/indexes/understanding-indexes
Vector Databases for Embeddings with Pinecone

Creating a Pinecone API key

 

  1. Create a Pinecone Starter account → pinecone.io
  2. Head to "API Keys"
  3. Copy your API key

Pinecone homepage

Pinecone's API keys page

Vector Databases for Embeddings with Pinecone

Creating a serverless index

from pinecone import Pinecone, ServerlessSpec


pc = Pinecone(api_key="API_KEY")
pc.create_index(
name='datacamp-index',
dimension=1536,
spec=ServerlessSpec(
cloud='aws', region='us-east-1'
)
)
Vector Databases for Embeddings with Pinecone

Checking our indexes

pc.list_indexes()
{'indexes': [{'dimension': 1536,
              'host': 'datacamp-index-1eef0f4.svc.aped-4627-b74a.pinecone.io',
              'metric': 'cosine',
              'name': 'datacamp-index',
              'spec': {'serverless': {'cloud': 'aws', 'region': 'us-east-1'}},
              'status': {'ready': True, 'state': 'Ready'}}]}
Vector Databases for Embeddings with Pinecone

Let's practice!

Vector Databases for Embeddings with Pinecone

Preparing Video For Download...