Vector Databases for Embeddings with Pinecone
James Chapman
Curriculum Manager, DataCamp
{
"genre": "action",
"year": 2020,
"color": "blue",
"fit": "straight",
"price": 29.99,
"is_jeans": true,
"areas": ["London", "Kent", "Bath"]
}
index.query( vector=[-0.250919762305275, ...],filter={"genre": {"$eq": "documentary"}, "year": 2019},top_k=1 )
$eq - Equal to (number, string, boolean)$ne - Not equal to (number, string, boolean)$gt - Greater than (number)$gte - Greater than or equal to (number)$lt - Less than (number)$lte - Less than or equal to (number)$in - In array (string or number)$nin - Not in array (string or number)index.query( vector=[-0.250919762305275, ...],filter={"year": {"$gt": 2019},},top_k=1,include_metadatas=True)
{'matches': [{'id': '1', 'score': 0.0478537641,
'values': [],
'metadata': {'genre': 'action', 'year': 2020}}],
'namespace': '',
'usage': {'read_units': 5}}
Vector Databases for Embeddings with Pinecone