Developing AI Systems with the OpenAI API
Francesca Donadoni
Curriculum Manager, DataCamp
from tenacity import ( retry, stop_after_attempt, wait_random_exponential )
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
def get_response(model, message): response = client.chat.completions.create( model=model, messages=[message], response_format={"type": "json_object"} ) return response.choices[0].message.content
countries = ["United States", "Ireland", "India"] message=[ { "role": "system", "content": """You are given a series of countries and are asked to return the country and capital city. Provide each of the questions with an answer in the response as separate content.""", }]
[message.append({"role": "user", "content": i }) for i in countries]
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=message
)
print(response.choices[0].message.content)
United States: Washington D.C.
Ireland: Dublin
India: New Delhi
import tiktoken
encoding = tiktoken.encoding_for_model("gpt-4o-mini")
prompt = "Tokens can be full words, or groups of characters commonly grouped together: tokenization."
num_tokens = len(encoding.encode(prompt))
print("Number of tokens in prompt:", num_tokens)
Number of tokens in prompt: 17
Developing AI Systems with the OpenAI API