Inference for Linear Regression in R
Jo Hardin
Professor, Pomona College
lm(log(price) ~ log(bath), data=LAhomes) %>% tidy()
term estimate std.error statistic p.value
1 (Intercept) 12.23 0.0280 437.2 0.00e+00
2 log(bath) 1.43 0.0306 46.6 9.66e-300
lm(log(price) ~ log(sqft) + log(bath), data=LAhomes) %>% tidy()
term estimate std.error statistic p.value
1 (Intercept) 2.514 0.2619 9.601 2.96e-21
2 log(sqft) 1.471 0.0395 37.221 1.19e-218
3 log(bath) -0.039 0.0453 -0.862 3.89e-01
lm(log(price) ~ log(bath), data=LAhomes) %>% tidy()
term estimate std.error statistic p.value
1 (Intercept) 12.23 0.0280 437.2 0.00e+00
2 log(bath) 1.43 0.0306 46.6 9.66e-300
lm(log(price) ~ log(sqft) + log(bath), data=LAhomes) %>% tidy()
term estimate std.error statistic p.value
1 (Intercept) 2.514 0.2619 9.601 2.96e-21
2 log(sqft) 1.471 0.0395 37.221 1.19e-218
3 log(bath) -0.039 0.0453 -0.862 3.89e-01
lm(log(price) ~ log(bath) + bed, data=LAhomes) %>% tidy()
term estimate std.error statistic p.value
1 (Intercept) 11.965 0.0384 311.67 0.00e+00
2 log(bath) 1.076 0.0465 23.14 2.38e-102
3 bed 0.189 0.0193 9.82 4.01e-22
lm(log(price) ~ log(sqft) + log(bath) + bed, data=LAhomes) %>% tidy()
term estimate std.error statistic p.value
1 (Intercept) 1.5364 0.2894 5.310 1.25e-07
2 log(sqft) 1.6456 0.0454 36.215 6.27e-210
3 log(bath) 0.0165 0.0452 0.365 7.15e-01
4 bed -0.1236 0.0167 -7.411 2.03e-13
Inference for Linear Regression in R