What is pandas?

Introduction to Data Science in Python

Hillary Green-Lerman

Lead Data Scientist, Looker

What can pandas do for you?

  • Loading tabular data from different sources
  • Search for particular rows or columns
  • Calculate aggregate statistics
  • Combining data from multiple sources
Introduction to Data Science in Python

Tabular data with pandas

Tabular Data

+-------------------------------------------------+
|        suspect        |     location    | price |
+-----------------------+-----------------+-------+
| Fred Frequentist      | Petroleum Plaza | 24.95 |
| Ronald Aylmer Fisher  | Clothing Club   | 20.15 |
+-------------------------------------------------+

DataFrame

                suspect        location  price
0      Fred Frequentist  Perolium Plaza  24.95
1  Ronald Aylmer Fisher   Clothing Club  20.15
Introduction to Data Science in Python

CSV files

Introduction to Data Science in Python

Loading a CSV

import pandas as pd
df = pd.read_csv('ransom.csv')
Introduction to Data Science in Python

Displaying a DataFrame

df = pd.read_csv('filename.csv')

print(df)
                 suspect         location          item  price
0         Kirstine Smith  Petroleum Plaza           gas  24.95
1       Fred Frequentist      Burger Mart         fries   1.95
2           Gertrude Cox      Burger Mart         fries   1.95
3   Ronald Aylmer Fisher    Clothing Club         shirt  14.25
4         Kirstine Smith    Clothing Club         dress  20.15
5       Fred Frequentist   Groceries R Us     cucumbers   2.05
6         Kirstine Smith    Clothing Club         dress  20.15
7           Gertrude Cox  Petroleum Plaza   fizzy drink   1.90
8           Gertrude Cox      Burger Mart         fries   1.95
9   Ronald Aylmer Fisher    Clothing Club         shirt  14.25
10  Ronald Aylmer Fisher  Petroleum Plaza       carwash  13.25
11  Ronald Aylmer Fisher    Clothing Club         shirt  14.25
12        Kirstine Smith  Petroleum Plaza           gas  24.95
13      Fred Frequentist   Groceries R Us          eggs   6.50
14          Gertrude Cox  Petroleum Plaza           gas  24.95
15      Fred Frequentist   Groceries R Us          eggs   6.50
16  Ronald Aylmer Fisher   Groceries R Us          eggs   6.50
17      Fred Frequentist   Groceries R Us        cheese   5.00
Introduction to Data Science in Python

Inspecting a DataFrame

df.head()
print(df.head())
                 suspect         location          item  price
0         Kirstine Smith  Petroleum Plaza           gas  24.95
1       Fred Frequentist      Burger Mart         fries   1.95
2           Gertrude Cox      Burger Mart         fries   1.95
3   Ronald Aylmer Fisher    Clothing Club         shirt  14.25
4         Kirstine Smith    Clothing Club         dress  20.15
Introduction to Data Science in Python

Inspecting a DataFrame

df.info()
print(df.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26 entries, 0 to 25
Data columns (total 3 columns):
 #   Column        Non-Null Count  Dtype  
 --  ------        --------------  -----  
 0   letter_index  26 non-null     int64 
 1   letter        26 non-null     object 
 2   frequency     26 non-null     float64 
dtypes: float64(1), int64(1), object(1)
memory usage: 704.0+ bytes
Introduction to Data Science in Python

Inspecting a DataFrame

Introduction to Data Science in Python

Let's practice!

Introduction to Data Science in Python

Preparing Video For Download...