Extreme Gradient Boosting with XGBoost
Sergey Fogelson
Head of Data Science, TelevisaUnivision
import xgboost as xgb import pandas as pd import numpy as np from sklearn.model_selection import train_test_split boston_data = pd.read_csv("boston_housing.csv")
X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1] X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, random_state=123)
xg_reg = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=10, seed=123) xg_reg.fit(X_train, y_train) preds = xg_reg.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_test,preds))
print("RMSE: %f" % (rmse))
RMSE: 129043.2314
import xgboost as xgb import pandas as pd import numpy as np from sklearn.model_selection import train_test_split boston_data = pd.read_csv("boston_housing.csv") X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1] X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, random_state=123)
DM_train = xgb.DMatrix(data=X_train,label=y_train) DM_test = xgb.DMatrix(data=X_test,label=y_test)
params = {"booster":"gblinear","objective":"reg:squarederror"}
xg_reg = xgb.train(params = params, dtrain=DM_train, num_boost_round=10) preds = xg_reg.predict(DM_test)
rmse = np.sqrt(mean_squared_error(y_test,preds))
print("RMSE: %f" % (rmse))
RMSE: 124326.24465
Extreme Gradient Boosting with XGBoost