Extreme Gradient Boosting with XGBoost
Sergey Fogelson
Head of Data Science, TelevisaUnivision
import xgboost as xgb import pandas as pd import numpy as np from sklearn.model_selection import train_test_split
class_data = pd.read_csv("classification_data.csv") X, y = class_data.iloc[:,:-1], class_data.iloc[:,-1]
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, random_state=123)
xg_cl = xgb.XGBClassifier(objective='binary:logistic', n_estimators=10, seed=123)
xg_cl.fit(X_train, y_train) preds = xg_cl.predict(X_test)
accuracy = float(np.sum(preds==y_test))/y_test.shape[0] print("accuracy: %f" % (accuracy))
accuracy: 0.78333
Extreme Gradient Boosting with XGBoost