Extreme Gradient Boosting with XGBoost
Sergey Fogelson
Head of Data Science, TelevisaUnivision
import xgboost as xgb import pandas as pd
churn_data = pd.read_csv("classification_data.csv")
churn_dmatrix = xgb.DMatrix(data=churn_data.iloc[:,:-1], label=churn_data.month_5_still_here)
params={"objective":"binary:logistic","max_depth":4}
cv_results = xgb.cv(dtrain=churn_dmatrix, params=params, nfold=4, num_boost_round=10, metrics="error", as_pandas=True)
print("Accuracy: %f" %((1-cv_results["test-error-mean"]).iloc[-1]))
Accuracy: 0.88315
Extreme Gradient Boosting with XGBoost