Working with Llama 3
Imtihan Ahmed
Machine Learning Engineer





Sending a structured conversation
create_chat_completion() function
from llama_cpp import Llama llm = Llama(model_path="path/to/model.gguf")message_list = [...] # This list includes rolesresponse = llm.create_chat_completion(messages = message_list)
system_message = "You are a business consultant who gives data-driven answers."message_list = [{"role": "system","content": system_message}]
system_message = "You are a business consultant who gives data-driven answers."user_message = "What are the key factors in a successful marketing strategy?"message_list = [{"role": "system", "content": system_message},{ "role": "user", "content": user_message }]
from llama_cpp import Llama llm = Llama(model_path="path/to/model.gguf") system_message = "You are a business consultant who gives data-driven answers." user_message = "What are the key factors in a successful marketing strategy?" message_list = [{"role": "system", "content": system_message}, {"role": "user", "content": user_message}]response = llm.create_chat_completion(messages = message_list) print(response)
{'id': ..., 'object': ..., 'created': ..., 'model': ..., 'choices': [...], ...}
response["choices"][0]

response["choices"][0]

response["choices"][0]

response["choices"][0]

result['choices'][0]['message']['content']
'A successful marketing strategy relies on clear objectives, established
through specific, measurable goals. Understanding the target audience ...'
Working with Llama 3