Image Processing in Python
Rebeca Gonzalez
Data Engineer
# Import the classifier class from skimage.feature import Cascade
# Load the trained file from the module root. trained_file = data.lbp_frontal_face_cascade_filename()
# Initialize the detector cascade. detector = Cascade(trained_file)
# Apply detector on the image detected = detector.detect_multi_scale(img=image,
scale_factor=1.2,
step_ratio=1,
min_size=(10, 10), max_size=(200, 200))
print(detected)
# Show image with detected face marked show_detected_face(image, detected)
Detected face: [{'r': 115, 'c': 210, 'width': 167, 'height': 167}]
def show_detected_face(result, detected, title="Face image"):
plt.imshow(result)
img_desc = plt.gca()
plt.set_cmap('gray')
plt.title(title)
plt.axis('off')
for patch in detected:
img_desc.add_patch(
patches.Rectangle(
(patch['c'], patch['r']),
patch['width'],
patch['height'],
fill=False,color='r',linewidth=2)
)
plt.show()
Image Processing in Python