Introduction to Data Quality with Great Expectations
Davina Moossazadeh
Data Scientist
How fit a dataset is for its intended purpose
A model can only be as good as the the data going in!
Great Expectations (GX) - A platform for managing data quality
Expectation - Verifiable assertion about data
Data Context - The primary entry point for a GX deployment
Import Great Expectations with the alias gx
:
import great_expectations as gx
Use get_context()
to create the Data Context:
context = gx.get_context()
print(context)
{ "analytics_enabled": true,
"checkpoint_store_name": "default_checkpoint_store",
"config_variables_file_path": "uncommitted/config_variables.yml",
"config_version": 4.0,
"data_context_id": "5b407294-b17c-43e3-aa5f-4f8a4741e772",
"expectations_store_name": "default_expectations_store",
"fluent_datasources": {},
"plugins_directory": "plugins/",
"stores": {},
"validation_results_store_name": "default_validations_store" }
Introduction to Data Quality with Great Expectations