Introduction to Data Quality with Great Expectations
Davina Moossazadeh
Data Scientist
Expectation - A verifiable assertion about data
row_count_expectation = gx.expectations.ExpectTableRowCountToEqual( value=118000 )
validation_results = batch.validate(expect=row_count_expectation)
print(validation_results.success)
False
print(validation_results.result)
{'observed_value': 118066}
Use ExpectTableRowCountToBeBetween
to define a range for row counts:
row_count_expectation = gx.expectations.ExpectTableRowCountToBeBetween(
min_value=117000, max_value=119000 )
validation_results = batch.validate(expect=row_count_expectation)
print(validation_results.success)
True
print(validation_results.result)
{'observed_value': 118066}
col_count_expectation = gx.expectations.ExpectTableColumnCountToEqual(
value=15
)
validation_results = batch.validate(expect=col_count_expectation)
print(validation_results.success)
False
print(validation_result.result)
{'observed_value': 18}
Use ExpectTableColumnCountToBeBetween
to define a range for column counts:
col_count_expectation = gx.expectations.ExpectTableColumnCountToBeBetween(
min_value=14, max_value=18
)
validation_results = batch.validate(expect=col_count_expectation)
print(validation_results.success)
True
print(validation_result.result)
{'observed_value': 18}
Use ExpectTableColumnsToMatchSet
to validate column names against a set:
expected_cols = ['clouds_all', 'snow_1h', 'rain_1h', 'wind_speed', 'humidity', 'pressure', 'temp', 'GHI', 'Energy delta[Wh]', 'Time', 'Time']
col_names_expectation = gx.expectations.ExpectTableColumnsToMatchSet( column_set=expected_cols )
print(col_names_expectation.success, col_names_expectation.result)
True
{'observed_value': ['Time', 'Energy delta[Wh]', 'GHI', 'temp', 'pressure',
'humidity', 'wind_speed', 'rain_1h', 'snow_1h', 'clouds_all'}
Use ExpectColumnToExist
to check if a specific column is present in the dataset:
col_name_expectation = gx.expectations.ExpectColumnToExist(column="not_a_column")
validation_result = batch.validate(expect=col_name_expectation)
print(validation_result.success)
False
col_name_expectation = gx.expectations.ExpectColumnToExist(column="GHI")
validation_result = batch.validate(expect=col_name_expectation)
print(validation_result.success)
True
Shape Expectations:
ExpectTableRowCountToEqual(value: int)
ExpectTableRowCountToBeBetween(
min_value: int, max_value: int
)
ExpectTableColumnCountToEqual(
value: int
)
ExpectTableColumnCountToBeBetween(
min_value: int, max_value: int
)
Column name Expectations:
ExpectTableColumnsToMatchSet(
column_set: set
)
ExpectColumnToExist(column: str)
Introduction to Data Quality with Great Expectations