Introduction to Data Quality with Great Expectations
Davina Moossazadeh
Data Scientist
context = gx.get_context()
Create Data Source from Data Context:
data_source = context.data_sources.add_pandas(
name: str
)
Create Data Asset from Data Source:
data_asset = data_source.add_dataframe_asset(
name: str
)
Create Batch Definition from Data Asset:
batch_definition = data_asset. \
add_batch_definition_whole_dataframe(
name: str
)
Create Batch from Batch Definition:
batch = batch_definition.get_batch(
batch_parameters={"dataframe": dataframe}
)
$$
Get Batch DataFrame rows:
batch.head(fetch_all: bool)
Get Batch DataFrame column list:
batch.columns()
Create an Expectation:
gx.expectations.Expect...(...)
Create a row count Expectation:
expectation = gx.expectations. \
ExpectTableRowCountToEqual(
value: int
)
$$
Validate Expectation:
validation_results = batch.validate(
expect=expectation
)
Check Validation Results:
validation_results.describe()
validation_results.success
validation_results.result
Shape Expectations:
ExpectTableRowCountToEqual(value: int)
ExpectTableRowCountToBeBetween(
min_value: int, max_value: int
)
ExpectTableColumnCountToEqual(
value: int
)
ExpectTableColumnCountToBeBetween(
min_value: int, max_value: int
)
$$
Column name Expectations:
ExpectTableColumnsToMatchSet(
column_set: set
)
ExpectColumnToExist(column: str)
Create Expectation Suite:
suite = gx.ExpectationSuite(name: str)
Add Expectation to Suite:
suite.add_expectation(expectation)
Access Suite's Expectations:
suite.expectations
$$
Validate Expectation Suite:
validation_results = batch.validate(
expect=suite
)
Check Validation Results:
validation_results.success
validation_results.describe()
Add Expectation Suite to Data Context:
context.suites.add(suite)
Create Validation Definition:
validation_definition = \
gx.ValidationDefinition(
name: str,
data=batch_definition,
suite=suite
)
$$
Run Validation:
validation_results = \
validation_definition.run(
batch_parameters={"dataframe": dataframe}
)
Check Validation Results:
validation_results.success
validation_results.describe()
Add Validation Definition to Data Context:
context.validation_definitions.add(
validation_definition
)
Create Checkpoint:
checkpoint = gx.Checkpoint(
name: str,
validation_definitions: list,
)
$$
Run Checkpoint:
checkpoint_results = checkpoint.run(
batch_parameters={
"dataframe": dataframe
}
)
Check Checkpoint Results:
checkpoint_results.success
Copy Expectation:
expectation_copy = expectation.copy()
expectation_copy.id = None
Check if Expectation is in Suite:
expectation in suite.expectations
Delete Expectation:
suite.delete_expectation(expectation)
$$
Update Expectation value:
expectation.value = new_value
Save changes to Expectation:
expectation.save()
Save changes to Expectation Suite:
suite.save()
Add a component to Data Context:
context.data_sources.add(data_source)
context.suites.add(suite)
context.validation_definitions.add(
validation_definition
)
context.checkpoints.add(checkpoint)
$$
Retrieve a component:
.get(name: str)
List components:
.all()
Delete a component:
.delete(name: str)
Row-level Expectations:
ExpectColumnValuesToNotBeNull(
column: str
)
ExpectColumnValuesToBeOfType(
column: str, type_: str
)
$$
Aggregate-level Expectations:
ExpectColumnDistinctValuesToEqualSet(
column: str, value_set: set
)
ExpectColumnUniqueValueCountToBeBetween(
column: str,
min_value: int, max_value: int
)
ExpectColumnValuesToBeUnique(column: str)
ExpectColumnMostCommonValueToBeInSet(
column: str, value_set: set
)
Numeric Expectations:
ExpectColumn<METRIC>ToBeBetween(
column: str, min_value: int, max_value: int
)
# <METRIC> in
# {"Mean", "Median", "Stdev", "Sum"}
ExpectColumnValuesToBeBetween(
column: str, min_value: int, max_value: int
)
ExpectColumnValuesToBeIncreasing(column: str)
ExpectColumnValuesToBeDecreasing(column: str)
$$
String Expectations:
ExpectColumnValueLengthsToEqual(
column: str, value: int
)
ExpectColumnValuesToMatchRegex(
column: str, regex: str
)
ExpectColumnValuesToMatchRegexList(
column: str, regex_list: list
)
ExpectColumnValuesToBe{Dateutil,Json}Parseable(
column: str
)
expectation = gx.expectations.Expect...(
expetation_parameters,
...,
condition_parser='pandas',
row_condition: str,
)
Introduction to Data Quality with Great Expectations