Activation functions

Introduction to Deep Learning in Python

Dan Becker

Data Scientist and contributor to Keras and TensorFlow libraries

Linear vs. non-linear Functions

ch1_3.003.png

Introduction to Deep Learning in Python

Activation functions

  • Applied to node inputs to produce node output
Introduction to Deep Learning in Python

Improving our neural network

ch1_3.007.png

Introduction to Deep Learning in Python

Activation functions

ch1_3.009.png

Introduction to Deep Learning in Python

ReLU (Rectified Linear Activation)

ch1_3.011.png

Introduction to Deep Learning in Python

Activation functions

import numpy as np
input_data = np.array([-1, 2])
weights = {'node_0': np.array([3, 3]),
               'node_1': np.array([1, 5]),
               'output': np.array([2, -1])}
node_0_input = (input_data * weights['node_0']).sum()
node_0_output = np.tanh(node_0_input)
node_1_input = (input_data * weights['node_1']).sum()
node_1_output = np.tanh(node_1_input)
hidden_layer_outputs = np.array([node_0_output, node_1_output])
output = (hidden_layer_output * weights['output']).sum()
print(output)
1.2382242525694254
Introduction to Deep Learning in Python

Let's practice!

Introduction to Deep Learning in Python

Preparing Video For Download...