Introduction to generator expressions

Python Toolbox

Hugo Bowne-Anderson

Data Scientist at DataCamp

Generator expressions

  • Recall list comprehension
[2 * num for num in range(10)]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
  • Use ( ) instead of [ ]
(2 * num for num in range(10))
<generator object <genexpr> at 0x1046bf888>
Python Toolbox

List comprehensions vs. generators

  • List comprehension - returns a list
  • Generators - returns a generator object
  • Both can be iterated over
Python Toolbox

Printing values from generators (1)

result = (num for num in range(6))

for num in result: print(num)
0
1
2
3
4
5
result = (num for num in range(6))

print(list(result))
[0, 1, 2, 3, 4, 5]
Python Toolbox

Printing values from generators (2)

result = (num for num in range(6))
  • Lazy evaluation
print(next(result))
0
print(next(result))
1
print(next(result))
2
print(next(result))
3
print(next(result))
4
Python Toolbox

Generators vs. list comprehensions

Python Toolbox

Generators vs. list comprehensions

Python Toolbox

Generators vs. list comprehensions

Python Toolbox

Conditionals in generator expressions

even_nums = (num for num in range(10) if num % 2 == 0)

print(list(even_nums))
[0, 2, 4, 6, 8]
Python Toolbox

Generator functions

  • Produces generator objects when called
  • Defined like a regular function - def
  • Yields a sequence of values instead of returning a single value
  • Generates a value with yield keyword
Python Toolbox

Build a generator function

  • sequence.py
def num_sequence(n):
    """Generate values from 0 to n."""
    i = 0
    while i < n:
        yield i
        i += 1
Python Toolbox

Use a generator function

result = num_sequence(5)

print(type(result))
<class 'generator'>
for item in result:
    print(item)
0
1
2
3
4
Python Toolbox

Let's practice!

Python Toolbox

Preparing Video For Download...