Pandas – Parte 2

Python intermediário

Hugo Bowne-Anderson

Data Scientist at DataCamp

brics

import pandas as pd
brics = pd.read_csv("path/to/brics.csv", index_col = 0)
brics
         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
Python intermediário

Indexar e selecionar dados

  • Colchetes (2)
  • Métodos avançados
    • loc
    • iloc
Python intermediário

Acesso a colunas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics["country"]
BR          Brazil
RU          Russia
IN           India
CH           China
SA    South Africa
Name: country, dtype: object
Python intermediário

Acesso a colunas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
type(brics["country"])
pandas.core.series.Series
  • Matriz 1D com rótulo
Python intermediário

Acesso a colunas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[["country"]]
         country
BR        Brazil
RU        Russia
IN         India
CH         China
SA  South Africa
Python intermediário

Acesso a colunas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
type(brics[["country"]])
pandas.core.frame.DataFrame
Python intermediário

Acesso a colunas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermediário

Acesso a linhas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[1:4]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermediário

Acesso a linhas [ ]

         country    capital    area  population 
BR        Brazil   Brasilia   8.516      200.40    * 0 *
RU        Russia     Moscow  17.100      143.50    * 1 *
IN         India  New Delhi   3.286     1252.00    * 2 *
CH         China    Beijing   9.597     1357.00    * 3 *
SA  South Africa   Pretoria   1.221       52.98    * 4 *
brics[1:4]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermediário

Discussão [ ]

  • Colchetes: funcionalidade limitada
  • Idealmente
    • Matrizes 2D do NumPy
    • my_array[rows, columns]
  • pandas:
    • loc (baseado em rótulos)
    • iloc (baseado na posição inteira)
Python intermediário

Acesso a linhas: loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc["RU"]
country       Russia
capital       Moscow
area            17.1
population     143.5
Name: RU, dtype: object
  • Linha como Series do pandas
Python intermediário

Acesso a linhas: loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU"]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
  • DataFrame
Python intermediário

Acesso a linhas: loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermediário

Linhas e colunas: loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"], ["country", "capital"]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python intermediário

Linhas e colunas: loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[:, ["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermediário

Revisão

  • Colchetes (2)
    • Acesso a colunas brics[["country", "capital"]]
    • Acesso a linhas: só pelo fatiamento brics[1:4]
  • loc (baseado em rótulo)
    • Acesso a linhas brics.loc[["RU", "IN", "CH"]]
    • Acesso a colunas brics.loc[:, ["country", "capital"]]
    • Acesso a linhas e colunas
      brics.loc[
      ["RU", "IN", "CH"], 
      ["country", "capital"]
      ]
      
Python intermediário

Acesso a linhas: iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU"]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
brics.iloc[[1]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
Python intermediário

Acesso a linhas: iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermediário

Acesso a linhas: iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[[1,2,3]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermediário

Linhas e colunas: iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"], ["country", "capital"]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python intermediário

Linhas e colunas: iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[[1,2,3], [0, 1]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python intermediário

Linhas e colunas: iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[:, ["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermediário

Linhas e colunas: iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[:, [0,1]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermediário

Vamos praticar!

Python intermediário

Preparing Video For Download...