Data Manipulation with pandas
Maggie Matsui
Senior Content Developer at DataCamp
dogs[dogs["color"] == "Black"]["weight_kg"].mean()
dogs[dogs["color"] == "Brown"]["weight_kg"].mean()
dogs[dogs["color"] == "White"]["weight_kg"].mean()
dogs[dogs["color"] == "Gray"]["weight_kg"].mean()
dogs[dogs["color"] == "Tan"]["weight_kg"].mean()
26.0
24.0
74.0
17.0
2.0
dogs.groupby("color")["weight_kg"].mean()
color
Black 26.5
Brown 24.0
Gray 17.0
Tan 2.0
White 74.0
Name: weight_kg, dtype: float64
dogs.groupby("color")["weight_kg"].agg([min, max, sum])
min max sum
color
Black 24 29 53
Brown 24 24 48
Gray 17 17 17
Tan 2 2 2
White 74 74 74
dogs.groupby(["color", "breed"])["weight_kg"].mean()
color breed
Black Chow Chow 25
Labrador 29
Poodle 24
Brown Chow Chow 24
Labrador 24
Gray Schnauzer 17
Tan Chihuahua 2
White St. Bernard 74
Name: weight_kg, dtype: int64
dogs.groupby(["color", "breed"])[["weight_kg", "height_cm"]].mean()
weight_kg height_cm
color breed
Black Labrador 29 59
Poodle 24 43
Brown Chow Chow 24 46
Labrador 24 56
Gray Schnauzer 17 49
Tan Chihuahua 2 18
White St. Bernard 74 77
Data Manipulation with pandas