Supervised Learning with scikit-learn
George Boorman
Core Curriculum Manager
print(music_df[["duration_ms", "loudness", "speechiness"]].describe())
duration_ms loudness speechiness
count 1.000000e+03 1000.000000 1000.000000
mean 2.176493e+05 -8.284354 0.078642
std 1.137703e+05 5.065447 0.088291
min -1.000000e+00 -38.718000 0.023400
25% 1.831070e+05 -9.658500 0.033700
50% 2.176493e+05 -7.033500 0.045000
75% 2.564468e+05 -5.034000 0.078642
max 1.617333e+06 -0.883000 0.710000
Many models use some form of distance to inform them
Features on larger scales can disproportionately influence the model
Example: KNN uses distance explicitly when making predictions
We want features to be on a similar scale
Normalizing or standardizing (scaling and centering)
Subtract the mean and divide by variance
Can also subtract the minimum and divide by the range
Can also normalize so the data ranges from -1 to +1
See scikit-learn docs for further details
from sklearn.preprocessing import StandardScaler
X = music_df.drop("genre", axis=1).values y = music_df["genre"].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
print(np.mean(X), np.std(X)) print(np.mean(X_train_scaled), np.std(X_train_scaled))
19801.42536120538, 71343.52910125865
2.260817795600319e-17, 1.0
steps = [('scaler', StandardScaler()), ('knn', KNeighborsClassifier(n_neighbors=6))] pipeline = Pipeline(steps)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=21)
knn_scaled = pipeline.fit(X_train, y_train)
y_pred = knn_scaled.predict(X_test)
print(knn_scaled.score(X_test, y_test))
0.81
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=21)
knn_unscaled = KNeighborsClassifier(n_neighbors=6).fit(X_train, y_train)
print(knn_unscaled.score(X_test, y_test))
0.53
from sklearn.model_selection import GridSearchCV steps = [('scaler', StandardScaler()), ('knn', KNeighborsClassifier())] pipeline = Pipeline(steps)
parameters = {"knn__n_neighbors": np.arange(1, 50)}
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=21)
cv = GridSearchCV(pipeline, param_grid=parameters)
cv.fit(X_train, y_train)
y_pred = cv.predict(X_test)
print(cv.best_score_)
0.8199999999999999
print(cv.best_params_)
{'knn__n_neighbors': 12}
Supervised Learning with scikit-learn