Centralização e escalonamento

Aprendizado Supervisionado com o scikit-learn

George Boorman

Core Curriculum Manager

Por que fazer o escalonamento dos dados?

print(music_df[["duration_ms", "loudness", "speechiness"]].describe())
         duration_ms     loudness       speechiness
count    1.000000e+03    1000.000000    1000.000000
mean     2.176493e+05    -8.284354      0.078642
std      1.137703e+05    5.065447       0.088291
min      -1.000000e+00   -38.718000     0.023400
25%      1.831070e+05    -9.658500      0.033700
50%      2.176493e+05    -7.033500      0.045000
75%      2.564468e+05    -5.034000      0.078642
max      1.617333e+06    -0.883000      0.710000
Aprendizado Supervisionado com o scikit-learn

Por que fazer o escalonamento dos dados?

  • Muitos modelos usam alguma forma de distância para orientá-los

  • Variáveis independentes em escalas maiores podem influenciar o modelo de forma desproporcional

  • Exemplo: o KNN usa a distância de maneira clara ao fazer previsões

  • As variáveis independentes devem estar em uma escala parecida

  • Normalização ou padronização (escalonamento e centralização)

Aprendizado Supervisionado com o scikit-learn

Como fazer o escalonamento dos dados

  • Subtrair a média e dividir pela variância

    • Todas as variáveis independentes estão centralizadas em torno de zero e têm variância igual a um
    • Isso é chamado de padronização
  • Também é possível subtrair o mínimo e dividir pela amplitude

    • Mínimo igual a 0 e máximo igual a 1
  • Também é possível normalizar os dados para que variem de -1 a +1

  • Consulte a documentação do scikit-learn para obter mais detalhes

Aprendizado Supervisionado com o scikit-learn

Escalonamento no scikit-learn

from sklearn.preprocessing import StandardScaler

X = music_df.drop("genre", axis=1).values y = music_df["genre"].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
print(np.mean(X), np.std(X)) print(np.mean(X_train_scaled), np.std(X_train_scaled))
19801.42536120538, 71343.52910125865
2.260817795600319e-17, 1.0
Aprendizado Supervisionado com o scikit-learn

Escalonamento em um pipeline

steps = [('scaler', StandardScaler()),
         ('knn', KNeighborsClassifier(n_neighbors=6))]
pipeline = Pipeline(steps)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=21)
knn_scaled = pipeline.fit(X_train, y_train)
y_pred = knn_scaled.predict(X_test)
print(knn_scaled.score(X_test, y_test))
0.81
Aprendizado Supervisionado com o scikit-learn

Comparação de desempenho usando dados não escalonados

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
                                                    random_state=21)
knn_unscaled = KNeighborsClassifier(n_neighbors=6).fit(X_train, y_train)
print(knn_unscaled.score(X_test, y_test))
0.53
Aprendizado Supervisionado com o scikit-learn

Validação cruzada e escalonamento em um pipeline

from sklearn.model_selection import GridSearchCV
steps = [('scaler', StandardScaler()),
         ('knn', KNeighborsClassifier())]
pipeline = Pipeline(steps)

parameters = {"knn__n_neighbors": np.arange(1, 50)}
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=21)
cv = GridSearchCV(pipeline, param_grid=parameters)
cv.fit(X_train, y_train)
y_pred = cv.predict(X_test)
Aprendizado Supervisionado com o scikit-learn

Verificação dos parâmetros do modelo

print(cv.best_score_)
0.8199999999999999
print(cv.best_params_)
{'knn__n_neighbors': 12}
Aprendizado Supervisionado com o scikit-learn

Vamos praticar!

Aprendizado Supervisionado com o scikit-learn

Preparing Video For Download...