Exploratory Data Analysis in Python
Izzy Weber
Curriculum Manager, DataCamp
divorce.corr()
income_man income_woman marriage_duration num_kids marriage_year
income_man 1.000 0.318 0.085 0.041 0.019
income_woman 0.318 1.000 0.079 -0.018 0.026
marriage_duration 0.085 0.079 1.000 0.447 -0.812
num_kids 0.041 -0.018 0.447 1.000 -0.461
marriage_year 0.019 0.026 -0.812 -0.461 1.000
.corr()
calculates Pearson correlation coefficient, measuring linear relationshipsns.heatmap(divorce.corr(), annot=True)
plt.show()
divorce["divorce_date"].min()
Timestamp('2000-01-08 00:00:00')
divorce["divorce_date"].max()
Timestamp('2015-11-03 00:00:00')
-6.48e-18
.971211
sns.scatterplot(data=divorce, x="income_man", y="income_woman")
plt.show()
sns.pairplot(data=divorce)
plt.show()
sns.pairplot(data=divorce, vars=["income_man", "income_woman", "marriage_duration"])
plt.show()
Exploratory Data Analysis in Python