Introduction to Data Visualization with Seaborn
Erin Case
Data Scientist
Reasons to change style:
sns.set_style()
sns.catplot(x="age",
y="masculinity_important",
data=masculinity_data,
hue="feel_masculine",
kind="point")
plt.show()
sns.set_style("whitegrid")
sns.catplot(x="age",
y="masculinity_important",
data=masculinity_data,
hue="feel_masculine",
kind="point")
plt.show()
sns.set_style("ticks")
sns.catplot(x="age",
y="masculinity_important",
data=masculinity_data,
hue="feel_masculine",
kind="point")
plt.show()
sns.set_style("dark")
sns.catplot(x="age",
y="masculinity_important",
data=masculinity_data,
hue="feel_masculine",
kind="point")
plt.show()
sns.set_style("darkgrid")
sns.catplot(x="age",
y="masculinity_important",
data=masculinity_data,
hue="feel_masculine",
kind="point")
plt.show()
sns.set_palette()
category_order = ["No answer",
"Not at all",
"Not very",
"Somewhat",
"Very"]
sns.catplot(x="how_masculine",
data=masculinity_data,
kind="count",
order=category_order)
plt.show()
sns.set_palette("RdBu")
category_order = ["No answer",
"Not at all",
"Not very",
"Somewhat",
"Very"]
sns.catplot(x="how_masculine",
data=masculinity_data,
kind="count",
order=category_order)
plt.show()
custom_palette = ["red", "green", "orange", "blue",
"yellow", "purple"]
sns.set_palette(custom_palette)
custom_palette = ['#FBB4AE', '#B3CDE3', '#CCEBC5',
'#DECBE4', '#FED9A6', '#FFFFCC',
'#E5D8BD', '#FDDAEC', '#F2F2F2']
sns.set_palette(custom_palette)
sns.set_context()
sns.catplot(x="age",
y="masculinity_important",
data=masculinity_data,
hue="feel_masculine",
kind="point")
plt.show()
sns.set_context("talk")
sns.catplot(x="age",
y="masculinity_important",
data=masculinity_data,
hue="feel_masculine",
kind="point")
plt.show()
Introduction to Data Visualization with Seaborn