Introducción a la visualización de datos con Seaborn
Erin Case
Data Scientist
![Gráfico de respuestas sobre masculinidad] (https://assets.datacamp.com/production/repositories/3996/datasets/e2ccb8ac7c292b7bed41b81325b354f02c1a0ec2/3.1_masc_countplot.png = 90)
relplot()col= y row=import matplotlib.pyplot as plt
import seaborn as sns
sns.countplot(x="how_masculine",
data=masculinity_data)
plt.show()

import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="how_masculine",
data=masculinity_data,
kind="count")
plt.show()

import matplotlib.pyplot as plt import seaborn as snscategory_order = ["No answer", "Not at all", "Not very", "Somewhat", "Very"]sns.catplot(x="how_masculine", data=masculinity_data, kind="count", order=category_order)plt.show()
![Gráfico reordenado de respuestas de masculinidad] (https://assets.datacamp.com/production/repositories/3996/datasets/3fea17252d239638f8860a941b498819fac1fb2d/3.1_masc_countplot_reorder.png = 90)
Muestra la media de la variable cuantitativa por categoría
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="day",
y="total_bill",
data=tips,
kind="bar")
plt.show()
![Gráfico de barras de la factura media diaria] (https://assets.datacamp.com/production/repositories/3996/datasets/35151ab0864e9af12cd5061c5614856b96533517/3.1_tips_barplot.png = 85)
![Gráfico de barras de la factura media diaria] (https://assets.datacamp.com/production/repositories/3996/datasets/35151ab0864e9af12cd5061c5614856b96533517/3.1_tips_barplot.png = 85)
import matplotlib.pyplot as plt import seaborn as sns sns.catplot(x="day", y="total_bill", data=tips, kind="bar", ci=None)plt.show()
![Gráfico de barras sin intervalos de confianza] (https://assets.datacamp.com/production/repositories/3996/datasets/855df2e5df50dd7815d83ea7c8c7d9334695df3f/3.1_tips_barplot_no_ci.png = 85)
import matplotlib.pyplot as plt import seaborn as sns sns.catplot(x="total_bill", y="day", data=tips, kind="bar")plt.show()

Introducción a la visualización de datos con Seaborn