Pseudo-random number generation

Sampling in Python

James Chapman

Curriculum Manager, DataCamp

What does random mean?

{adjective} made, done, happening, or chosen without method or conscious decision.

1 Oxford Languages
Sampling in Python

True random numbers

  • Generated from physical processes, like flipping coins
  • Hotbits uses radioactive decay
  • RANDOM.ORG uses atmospheric noise
  • True randomness is expensive
1 https://www.fourmilab.ch/hotbits 2 https://www.random.org
Sampling in Python

Pseudo-random number generation

  • Pseudo-random number generation is cheap and fast
  • Next "random" number calculated from previous "random" number
  • The first "random" number calculated from a seed
  • The same seed value yields the same random numbers
Sampling in Python

Pseudo-random number generation example

seed = 1
calc_next_random(seed)
3
calc_next_random(3)
2
calc_next_random(2)
6
Sampling in Python

Random number generating functions

  • Prepend with numpy.random, such as numpy.random.beta()
function distribution function distribution
.beta Beta .hypergeometric Hypergeometric
.binomial Binomial .lognormal Lognormal
.chisquare Chi-squared .negative_binomial Negative binomial
.exponential Exponential .normal Normal
.f F .poisson Poisson
.gamma Gamma .standard_t t
.geometric Geometric .uniform Uniform
Sampling in Python

Visualizing random numbers

randoms = np.random.beta(a=2, b=2, size=5000)
randoms
array([0.6208281 , 0.73216171, 0.44298403, ..., 
       0.13411873, 0.52198411, 0.72355098])
plt.hist(randoms, bins=np.arange(0, 1, 0.05))
plt.show()

hist-beta.png

Sampling in Python

Random numbers seeds

np.random.seed(20000229)
np.random.normal(loc=2, scale=1.5, size=2)
array([-0.59030264, 1.87821258])
np.random.normal(loc=2, scale=1.5, size=2)
array([2.52619561, 4.9684949 ])
np.random.seed(20000229)
np.random.normal(loc=2, scale=1.5, size=2)
array([-0.59030264, 1.87821258])
np.random.normal(loc=2, scale=1.5, size=2)
array([2.52619561, 4.9684949 ])
Sampling in Python

Using a different seed

np.random.seed(20000229)
np.random.normal(loc=2, scale=1.5, size=2)
array([-0.59030264, 1.87821258])
np.random.normal(loc=2, scale=1.5, size=2)
array([2.52619561, 4.9684949 ])
np.random.seed(20041004)
np.random.normal(loc=2, scale=1.5, size=2)
array([1.09364337, 4.55285159])
np.random.normal(loc=2, scale=1.5, size=2)
array([2.67038916, 2.36677492])
Sampling in Python

Let's practice!

Sampling in Python

Preparing Video For Download...