Intermediate Data Visualization with Seaborn
Chris Moffitt
Instructor
sns.regplot(data=df, x='temp',
y='total_rentals', marker='+')
residplot
function sns.residplot(data=df, x='temp', y='total_rentals')
order
parameter sns.regplot(data=df, x='temp',
y='total_rentals', order=2)
sns.residplot(data=df, x='temp',
y='total_rentals', order=2)
sns.regplot(data=df, x='mnth', y='total_rentals',
x_jitter=.1, order=2)
x_estimator
can be useful for highlighting trends sns.regplot(data=df, x='mnth', y='total_rentals',
x_estimator=np.mean, order=2)
x_bins
can be used to divide the data into discrete binssns.regplot(data=df,x='temp',y='total_rentals',
x_bins=4)
Intermediate Data Visualization with Seaborn