Basics of cluster analysis

Cluster Analysis in Python

Shaumik Daityari

Business Analyst

What is a cluster?

  • A group of items with similar characteristics
  • Google News: articles where similar words and word associations appear together
  • Customer Segments

Cluster Analysis in Python

Clustering algorithms

  • Hierarchical clustering
  • K means clustering
  • Other clustering algorithms: DBSCAN, Gaussian Methods
Cluster Analysis in Python

Cluster Analysis in Python

Cluster Analysis in Python

Cluster Analysis in Python

Cluster Analysis in Python

Cluster Analysis in Python

Hierarchical clustering in SciPy

from scipy.cluster.hierarchy import linkage, fcluster
from matplotlib import pyplot as plt
import seaborn as sns, pandas as pd
x_coordinates = [80.1, 93.1, 86.6, 98.5, 86.4, 9.5, 15.2, 3.4, 
                 10.4, 20.3, 44.2, 56.8, 49.2, 62.5, 44.0]
y_coordinates = [87.2, 96.1, 95.6, 92.4, 92.4, 57.7, 49.4, 
                 47.3, 59.1, 55.5, 25.6, 2.1, 10.9, 24.1, 10.3]

df = pd.DataFrame({'x_coordinate': x_coordinates,
                   'y_coordinate': y_coordinates})
Z = linkage(df, 'ward')
df['cluster_labels'] = fcluster(Z, 3, criterion='maxclust')
sns.scatterplot(x='x_coordinate', y='y_coordinate', 
                hue='cluster_labels', data = df)
plt.show()
Cluster Analysis in Python

Cluster Analysis in Python

Cluster Analysis in Python

Cluster Analysis in Python

Cluster Analysis in Python

Cluster Analysis in Python

K-means clustering in SciPy

from scipy.cluster.vq import kmeans, vq
from matplotlib import pyplot as plt
import seaborn as sns, pandas as pd

import random
random.seed((1000,2000))
x_coordinates = [80.1, 93.1, 86.6, 98.5, 86.4, 9.5, 15.2, 3.4, 
                 10.4, 20.3, 44.2, 56.8, 49.2, 62.5, 44.0]
y_coordinates = [87.2, 96.1, 95.6, 92.4, 92.4, 57.7, 49.4, 
                 47.3, 59.1, 55.5, 25.6, 2.1, 10.9, 24.1, 10.3]

df = pd.DataFrame({'x_coordinate': x_coordinates, 'y_coordinate': y_coordinates})
centroids,_ = kmeans(df, 3)
df['cluster_labels'], _ = vq(df, centroids)
sns.scatterplot(x='x_coordinate', y='y_coordinate', 
                hue='cluster_labels', data = df)
plt.show()
Cluster Analysis in Python

Cluster Analysis in Python

Next up: hands-on exercises

Cluster Analysis in Python

Preparing Video For Download...