ETL and ELT in Python
Jake Roach
Data Engineer
In this course:
Data is also sourced from:
Parquet files:
import pandas as pd
# Read the parquet file into memory
raw_stock_data = pd.read_parquet("raw_stock_data.parquet", engine="fastparquet")
pandas
DataFrameimport sqlalchemy
import pandas as pd
# Connection URI: schema_identifier://username:password@host:port/db
connection_uri = "postgresql+psycopg2://repl:password@localhost:5432/market"
db_engine = sqlalchemy.create_engine(connection_uri)
# Query the SQL database
raw_stock_data = pd.read_sql("SELECT * FROM raw_stock_data LIMIT 10", db_engine)
Separating logic into functions
def extract_from_sql(connection_uri, query):
# Create an engine, query data and return DataFrame
db_engine = sqlalchemy.create_engine(connection_uri)
return pd.read_sql(query, db_engine)
extract_from_sql("postgresql+psycopg2://.../market", "SELECT ... LIMIT 10;")
ETL and ELT in Python