ETL and ELT in Python
Jake Roach
Data Engineer
pandas
provides .to_sql()
to persist data to SQL
name
con
if_exists
index
index_label
# Create a connection object
connection_uri = "postgresql+psycopg2://repl:password@localhost:5432/market"
db_engine = sqlalchemy.create_engine(connection_uri)
# Use the .to_sql() method to persist data to SQL
clean_stock_data.to_sql(
name="filtered_stock_data",
con=db_engine,
if_exists="append",
index=True,
index_label="timestamps"
)
It's important to validate that data is persisted as expected.
# Pull data written to SQL table
to_validate = pd.read_sql("SELECT * FROM cleaned_stock_data", db_engine)
# Validate counts, record equality, etc
...
ETL and ELT in Python