Developing LLM Applications with LangChain
Jonathan Bennion
AI Engineer & LangChain Contributor
.pdf
, .csv
.ipynb
, .wav
pypdf
package: pip install pypdf
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("path/to/file/attention_is_all_you_need.pdf")
data = loader.load()
print(data[0])
Document(page_content='Provided proper attribution is provided, Google hereby grants
permission to\nreproduce the tables and figures in this paper solely for use in [...]
from langchain_community.document_loaders.csv_loader import CSVLoader
loader = CSVLoader('fifa_countries_audience.csv')
data = loader.load()
print(data[0])
Document(page_content='country: United States\nconfederation: CONCACAF\npopulation_share: [...]
unstructured
package: pip install unstructured
from langchain_community.document_loaders import UnstructuredHTMLLoader
loader = UnstructuredHTMLLoader("white_house_executive_order_nov_2023.html") data = loader.load()
print(data[0])
print(data[0].metadata)
page_content="To search this site, enter a search term\n\nSearch\n\nExecutive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence\n\nHome\n\nBriefing Room\n\nPresidential Actions\n\nBy the authority vested in me as President by the Constitution and the laws of the United States of America, it is hereby ordered as follows: ..."
{'source': 'white_house_executive_order_nov_2023.html'}
Developing LLM Applications with LangChain